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Seismic Analysis of the Large 70-Meter Antenna,
Part I: Earthquake Response Spectra Versus
Full Transient Analysis
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As a check on structure safety aspects, two approaches in seismic analysis for the large
70-m antennas are presented. The first approach, commonly used by civil engineers,
utilizes known recommended design response spectra. The second approach, which is the
full transient analysis, is versatile and applicable not only to earthquake loading but also
to other dynamic forcing functions. The results obtained at the fundamental structural
frequency show that the two approaches are in good agreement with each other and both
approaches show a safe design. The results also confirm past 64-m antenna seismic studies

done by the Caltech Seismology Staff.

l. Introduction

Since the trial structural-mechanical designs and the upgrad-
ing and rehabilitation effort of the present 64-m antenna to a
70-m aperture have been completed (Ref. 1), it is essential to
check the candidate design for severe environmental loading
conditions to satisfy safety requirements. The purpose of this
two part study is to investigate the earthquake response of the
large antenna structure, to present the modern methodology
and to check the structure safety aspects. The emphasis in
the first part is placed on the mathematical description of the
method of analysis with detailed design safety features to be
presented in the second part.

During the early design phase of the 64-m antenna network,
the safety against earthquake loading was one of the important
tasks that was taken into consideration. The conclusion of
that early seismic analysis, conducted by Prof. G. W. Housner
of the California Institute of Technology (Ref. 2), was that the
structural design should withstand the horizontal acceleration
of about 0.25G where G is the acceleration of gravity.

Today, with a wider access to modern digital computers
and new numerical techniques in structural mechanics, more
subtle dynamic analysis of structures is available. This first
part of the study will compare the results of two approaches:
the response spectra approach versus the full transient analysis.
Cross verification of the results should add to a better confi-
dence in understanding the behavior of the complex antenna
structure in response to random earthquake excitation.

Il. Methodology Description

The analysis of earthquake-excited structures needs to take
into account the nonperiodic form of the external forcing
term. Such a problem requires the use of special analytical
procedures, as presented in Refs. 3, 4, and 5, which are classi-
fied into two broad possibilities:

(1) The frequency response procedure

(2) The modal analysis procedure
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Procedure (1) simply determines the natural undamped fre-
quencies of the structure which the designer uses in compari-
son against the frequencies of the external forces in an effort
to avoid resonance. Procedure (2) is more important and
widely used in practice and will be described in this study
in detail. The differential equation of the structure under
dynamic loading is written in the form:

M]y+[Cly+[Kly+{f1=0 )

where y is generalized displacement, [M1}, [C], [K] are mass,
damping, and stiffness matrices, respectively, and {f} is an
external force vector where f(#) is an arbitrary function
of time. Equation (1) is the basic equation describing the
dynamic behavior of the structure.

The first step in solving Eq. (1) is the determination of the
free undamped response where no damping or forcing terms
exist. The special dynamic form of Eq. (1) is reduced to

M]y+[K]y=0 (2

The general solution of free responses represented by Eq. (2)
is written in the form:

n
5o =DV %0 Ge5) ®
=1

where w; are the eigenvalues (natural frequencies) of the
system, y,; are the eigenvectors, n is the degree of freedom

and j =~+/~1.

For forced responses represented by Eq. (1) the solution
can be written also in a linear combination of modes as

¥ =) 7z 0=D,] )
=1

where the matrix [y,] lists all the modes (assumed to be

normalized) and z(f) are scalar mode participation factors,
i=1,...,n zi(t) is a function of time and represents the
proportion of motion in each mode.

An important advantage of the linear mode superposition
in Eq. (4) is that an approximate solution can be obtained by
truncating modes and including only part of the total modal
contributions. In general, lower modes make the principal
contribution to the dynamic response, and good approxima-
tion is usually obtained by considering only the first few
modes in the analysis.
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If Eq. (4) is substituted into Eq. (1) and the result is
premultiplied by [y,] 7, then

17 M1 ] &+ [y, 17 (C) Iy,) 2}

+ )T IK) ] {23+ 17 {3 =0 (%)

By the orthogonality property,

0 i#j
0,37 ™M B, = ©)
mr i=j
where 7,j=1,...,nand MF is a generalized mass.

Also by definition of the eigenvalue problem,

K] O, =2 M) O}

then

0, )7 K] 0, = Q)
The matrix [C] is of such a form that

w2 €] B, = ®
2w, E,MF Q=]

where §; is the damping ratio. The natural frequency of a
structure affects its response to an earthquake. Most of the
energy content of an earthquake is in the 1 to 20 Hz fre-
quency range. The duration of “violent” shaking may last
20 or more seconds. If a structure has a fundamental natural
frequency in the 1 to 20 Hz range, then it will have time to
build up a resonant response. The level of resonance built
up depends on the structural damping. For antenna structures
considered here, a damping ratio of 7% for the concrete and
4% for the steel is reasonable. Table 1 lists recommended
damping ratio values (Ref. 6). For parameterization, we took
damping ratios as 2, 5 and 10% as described later in Section III.

Then, the system of Eq. (5) contains only diagonal terms
and forms simply a set of ordinary differential equations
which, after the modes are normalized, are written as
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Each ordinary differential equation in Eq. (9) can be solved
in an elementary manner, and the complete solution is ob-
tained by superposition as in Eq. (4). In the earthquake case,
forces {f(¢)}, at each node, vary in the same manner with
time. When the antenna is subjected to earthquake motions,
the foundation is subjected to a certain “forcing” accelera-
tion a(t), which tends to move with the ground. Since the
motion is relatively rapid, it causes severe stresses and deform-
ation throughout the antenna structure. If a mechanical-
structural component of the antenna is rigid, it will move with
the same acceleration motion of its base, and the dynamic
forces acting on it will be very nearly equal to those associated
with the base acceleration. By superposing and opposing
motions on the whole foundation-to-top structure, we can
consider the moving foundation as equivalent to a fixed
foundation with forces (-Ma {r}) acting on the nodes as shown
in Fig. 1. The vector {r} is an influence vector (Ref. 3) which
geometrically connects the acceleration at nodes. The {r}
consists of ones and zeros only.

A typical modal differential equation from Eq. (9) (for i =
1,...,n)is written as

£+ 2wt wlz=a(t) (10)
with
2, = «z,
and
o = o, 3 Ml ) | M} (11)

The solution of Eq. (10) can be written simply as the Duhamel
integral

t
z, = Z)l- fa('r) exp [-§; w, (1 -1)] sinw(r-7)dr
i %o
(12)

In practice, two approaches to solve Eqs. (10) through (12)
are followed:

Approach 1: Full transient analysis. The complete transient
response analysis is obtained from integration of Eq. (12),
carried out numerically. In principle, superpositions in Eq. (4)
will result in the full transient responses required. Often a
simple calculation is carried out for each mode to determine
maximum responses followed by a suitable “addition” of these
responses. More details are given in Appendices A and B.

Approach 2: Response spectra. Direct earthquake response
spectra are obtained without the necessity of carrying out
complete transient analysis. For various input earthquake
motions, the responses of a single degree of freedom (typical
of Eq. [10]) have been evaluated to determine the “envelope”
response spectra. These are available in the literature and are
known as the earthquake response spectra, as in Fig. 2 and 3.
The response spectra are useful to design engineers because
they embrace the spectra of many observed earthquakes. A
structure designer can safely select these design response
spectra as inputs that describe the statistically justified exci-
tation of the ground at a given site in the United States. They
included three x, y, z motions (two horizontal and one
vertical).

lll. Computational Results

Twenty values of natural frequencies and the participation
factors from Eq. (11) are made available from the JPL IDEAS
program for the 70-m antenna. The two approaches are com-
pared for the natural frequency at the first mode, with three
different damping ratios 2, 5 and 10%. Table 2 represents the
value of permissible displacement S; and acceleration S,
taken from spectrum curves proposed by Housner in Refs. 7
and 8. The first row in Table 2 concerns an earthquake of the
intensity expected at Goldstone, the second row an earth-
quake of the 1940 El Centro intensity. The third row repre-
sents values from the full transient analysis. The computer
program TRANST (see also Appendix A) was used to solve
Eq. (10) representing the motion of a single degree of freedom
of the system. The program solves optionally the eigenvalue
problem before proceeding to the transient response solution.
The fundamental frequency f = 1.59 Hz was used first for
computation. A “simplified” 1940 El Centro earthquake was
selected as the acceleration input function a(¢) in Eq. (10)
(Fig. 4). Transient displacement responses are shown in Fig. 5
for damping ratios 2, 5 and 10%, respectively.

Another numerical method was also used to evaluate the
Duhamel integral Eq. (12) representing the transient response
solution of Eq.(10). This numerical method uses trigonometric
identity and converts the original Duhamel integral into a
summation of closed form solutions. A description of this
method, as well as a flow chart of the computer program are
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given in the Appendix B. The transient response for the funda-
mental frequency f = 1.59 Hz, with damping ratios 2, 5 and
10% are given in Fig. 6. The results obtained from both
numerical methods are in excellent agreement.

IV. Conclusions

The development of methods and practices suitable for
structural design of the DSN large antennas should include
the analysis of the structure for earthquake resistance. In this
study two approaches were presented, one which utilizes
known recommended design response spectra, and the second

which is the full transient analysis, applicable also for a differ-
ent type of dynamic loading. The comparative results obtained
at the fundamental frequency show that the two approaches
are in good agreement. The preliminary results agree with past
64-m antenna study done by Caltech Seismology Staff that
shows that the center of the mass of the structure should not
exceed about 0.25 to 0.35G. In this first part of the study the
emphasis was on the mathematical tools to solve the responses
and on the cross verification of different approaches. The
second part of this study will compute the forces developed in
antenna structure components due to seismic excitation and
will compare these with seismic design requirements according
to building codes.
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Table 1.

Recommended damping ratios

Stress level

Type and condition
of structure

Percentage of
critical damping

Working srress, no more than
about 1/2 yield point

At or just below yield point

Vital piping
Welded steel, prestressed concrete,

well reinforced concrete
(only slight cracking)

Reinforced concrete with consider-
able cracking

Bolted and/or riveted steel, wood
structures with nailed or bolted
joints

Vital piping

Welded steel, prestressed concrete
(without complete loss in prestress)

Prestressed concrete with no pre-
stress left

Reinforced concrete

Bolted and/or riveted steel, wood
structures, with bolted joints

Wood structures with nailed joints

05t01.0

2

3toS

5to7

7 to 10
10 to 15

15 to 20

Table 2. Displacement and acceleration for fundamental frequency

w = 9.99 rad/s
f = 159Hz
T =0629s

Damping ratio, %

Displacement § 4, in. (cm)

Acceleration, S,/G

2

10

14 (3.556)
2.4 (6.096)
3.05 (7.747)

0.9 (2.286)
1.56 (3.963)
2.76 (7.01)

0.65(1.651)
0.96 (2.438)
2.31(5.867)

0.362
0.620
0.826

0.233
0.403
0.747

0.168
0.248
0.260
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Fig. 2. Combined earthquake response spectra (adapted from Ref. 3)
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Appendix A
Adams-Moulton Method

The first numerical solution of the antenna transient
response follows the Adams-Moulton method in solving a
system of linear differential equation of motion, written in the
matrix form as:

M) 12} + [C] 12} + [K] {Z} = {a()}  (A-D)

where the matrices [M], [C], and [K] are of the order N X V.

Equation (A-1) can be written as

Zy+ M)V [C] 2+ M)V [K] (2) = (M) (a(n)}
(A-2)
assuming [M] ™' exists.

Equation (A-2) can be written as

Zy=- M7V [C] 12} - (M)7Y [K) {2} + (MY {a(n)}

(A-3)
Equation (A-3) can be written in the form of
(Y3 =[4] (Y} +{B} (A-4)
if we let
z
{r} = (A-5)
z
z
{1 = (A-6)
Z
0] [}
{4] = (A-7)
-[M)7U K] - M [C)

and

{0}

B} = (A-8)

M7 {a(0)}

where [A] is the coefficient matrix of the order 2V X 2N,
{B}is a vector of dimension 2V, and [O] and [/] are the
N X N null and identity matrices, respectively.

Equation (A-4) is a set of 2V simultaneous first-order
differential equations which are solved by using the Adams-
Moulton numerical technique (JPL computer library sub-
routine SVDQ). The technique uses linear multistep predictor-
corrector formulas. Such a technique has the advantage that
from successive approximations to each value, an estimate of
the truncation error is made.

The fourth-order Runge-Kutta method is used to generate
the approximate values of the first four points (n - 3, 7 - 2,
n - 1, n), since the local truncation error is of order /3. Values
at these previous four points are needed to predict or correct
the value at the point (# + 1). The integration order is selected
in such a way as to maximize the step size and to reduce the
computation time, consistent with meeting the requested user
accuracy.

In the first-order equation

AR (A-9)
integrating between x,, and x, ,,
xn+1 x
dy n+1
= dx = f(x,) (A-10)
S

n

The Adams-Moulton method, like all predictor-corrector
methods, starts by predicting y,,, from an initial value of
V., and then provides successive improvements of ¥4y, 01
else corrects y,,,, before calculating the next step.
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The Adams-Moulton method uses the following predictor: Vo =Vt % O, *19F,=5F,_, +1,_)

_ h R = 0(h®) (A-12)
yn+1 B yn t 74T (szn —59fn—1 +37fn—2 -9f;1—3)

where h is the step size and R is the truncation error.

= 5 —
R =00 (a-11) By using the Eq. (A-11) as a predictor and Eq. (A-12) as
a corrector, the function y = y(x) is obtained. Further details
and the following corrector on the method can be found in Ref. A-1.
Reference

A-1. Carnahan, B., Luther, H., and Wilkes, J., Applied Numerical Methods. New York:
John Wiley, 1969.

CINPUT DATA: [M], K], [C], {a (f)D

FORM MATRIX [A]
(SUBROUTINE AINVD)

OUTPUT:
SOLVE YES EIGENVALUES,
EIGENVALUE PROBLEM EIGENVECTORS,
y = Ay HOMOGENEOUS
? SOLUTIONS

USE FOURTH-ORDER RUNGE-KUTTA
METHOD TO GENERATE THE FIRST
4 POINTS OF SOLUTION

-

SOLVE NON-HOMOGENEOUS
EQUATION BY PREDICTOR-
CORRECTOR METHOD
y=Ay+B
(SUBROUTINE SVDQ)

PROVIDE TRANSIENT RESPONSE
(SUBROUTINE FOVT)

i

OUTPUT: y ()
SUBROUTINE DMOUT, VOUT, MOUT

Fig. A-1. Flow chart of TRANST program
(using Adams-Moulton method)
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Appendix B

Numerical Evaluation of the Duhamel Integral

The Duhamel integral

i t
Zi'(t) = (Z) [ a(r) exp [-£,w/ - 1)] sin wlt-7)dr
oo

(B-1)

representing the transient response solution of the equation of
motion (Eq. {10]) can be evaluated numerically. Since the
acceleration input a(7) is given in a tabular form, the inte-
grand can be divided into a number of band functions added
together in such a manner as to form the original a(7) function.

Equation (B-1) is converted into the sum of exact solutions;
each resembles Eq. (B-1) but with a unit forcing function a(f).
The sum solution can be used when the actual input is approxi-
mated by band segments.

The approach is explained as follows: Using the trigono-
metric relation

sin wl.(t -7) = sin w;? cOs w,T - COS W, I sin w; T

(B-2)

substitute Eq. (B-2) into Eq. (B-1). The Duhamel Integral
becomes

exp(~Ew; 1) sin w,?

t
Z(1) = " f a(r) exp(§,w,7) cos w,r dr

' 0

exp(~§w, 1) cos w;t t

- w; [0 a(r)exp(§,w,;7) sin w;T dr

(B-3)
Using the relationships

_ exp(ax) (a cos fx + f sin Bx)

C12 +32

fexp(oz.x) cos Bx dx

(B4)

and
feXp(ax) sin fx dx = exp(ax) (o sin fx - § cos fx)
a? + 82
(B-5)
let
a = o
(B-6)
B = w,

1

and assume that the acceleration a(7) is constant (@) between
7=nAr and 7 = (n + 1) A7, where At is the step of summation.
Equation (B-3) then becomes

’ exp(—-siwit) sin w,?
Z(n) = —
W (1+£)

T=(nt1) AT

X Z a [eXP(EiwiT) (£, cos w7 + o sin wi'r):l

all A7 T=nAT

exp(-§,,1) cos Wt

W (1+£2)
r=(n+1) AT
X Z a [exp(iiwir) (§; sin w,T - w; cos w7 )]
allar T=n AT
(B-7)

for integration step between 7 =nAr and 7= (n + 1) At where
n is an integer.

The integral in Eq. (B-1) is then transformed into the sum-
mation of the individual contributions from 7=0to 7=¢. A
flow chart of the FORTRAN program used to evaluate Eq.
(B-7) is shown in Fig. B-1.
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INPUT

NT = TOTAL TIME

DT = TIME INCREMENT
OMEGA = FREQUENCY (w,)

CI = DAMPING RATIO (¢,)

¥

READ
T () = TIME (T)
ACCEL (1) = INPUT FORCING FUNCTION (a(T))

i

EVALUATE
Ay = Lo - €t sin witl/lw? (1 + )
B, = l(exp - &;wih) cos witl/[w? (1 + €2))
A,= a (1) (exp $,wnd (€ W; €os w; T + w, sin wir)
By= a(7) (exp &; w, ) (§; w; sin w,T - w; cos w;T)

i

SUM
N N
Z0=) YA -6) D )
=1

I

I:RANSIENT RESPONSE TIME HISTORY

Fig. B-1. Flow chart of numerical evaluation of
Duhamel integral




